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1 INTRODUCTION

Transition to turbulence in swept-wing flows has resisted correlation with linear theory because of its sensitivity to

freestream conditions and 3-D roughness and because one of the principal instability modes quickly becomes

nonlinear. In the face of such a formidable problem, two rather long-term fundamental efforts have been underway at

DLR G6ttingen and Arizona State University that address swept-wing transition. These efforts have been recently

reviewed by Bippes (1997) and Reibert and Saric (1997). Thus, the present work is a continuation of a series of

studies on swept-wing boundary layers which have led to a better understanding of the transition process. In

particular, we have taken advantage of the sensitivity to 3-D roughness and the modal nature of the instability in

order to propose a particular control strategy.

Complementing the two aforementioned reviews, general reviews of the swept-wing transition problem are found in

Arnal (1997) and Kachanov (1996). Other recent reviews include Reshotko (1997), Crouch (1997), and Herbert

(1997a,b). The failure of linear theory is discussed in Reed et al. (1996). The historical work is found in Reed and

Saric (1989).

The basic idea is that the combination of sweep and chordwise pressure gradient within the boundary layer creates a

velocity component perpendicular to the inviscid streamline. This crossflow profile is inflectional and exhibits both

traveling and stationary unstable waves called crossflow vortices that are (approximately) aligned along the inviscid

streamlines. Under conditions of low freestream turbulence levels, the dominant crossflow wave is stationary

(Reibert and Saric 1997) while moderate to high turbulence levels initiate dominant traveling waves (Dehle and

Bippes 1996; Bippes 1997). The mechanism is relatively insensitive to sound and 2-D surface roughness (Radeztsky

et al. 1993) but very sensitive to 3-D roughness near the attachment line.

We concentrate our work on low-turbulence freestream flows and stationary crossflow waves. Although the v' and

w" components of the disturbances are very small, by convecting streamwise momentum in the wall-normal

direction, they produce O(1) changes inu'.Thus the mean flow is highly distorted with localized inflection points.

Transition is then triggered by a high-frequency secondary instability of the distorted mean profile (Kohama et al.

1991; Malik et al. 1994).

2 FACILITY AND MODEL

The ASU crossflow experiments are conducted in the Arizona State University Unsteady Wind Tunnel--a low-

speed, low-turbulence, closed-circuit facility in which the stability and transition of laminar boundary layers are

studied (Saric 1992a). The NLF (2)-0415 airfoil model (Somers and Horstmann 1985) is mounted vertically in the

1.4 m x 1.4 m x 4.9 m test section. Floor and ceiling contours installed in the test section produce an infinite-span

swept-wing flow (Figure 1). With a 45 ° sweep and a -4 ° angle of attack, the favorable pressure gradient produces

considerable crossflow while suppressing T-S modes (Figure 2). The efficacy of the wall liners in establishing

spanwise uniform flow is shown in Figure 3 which is a superposition of 100 mean profiles of the streamwise

component. The basic-state flow is found to be identical to Reibert et al. (1996).

The aluminum surface of the NLF (2)-0415 is hand polished to a 0.25 tam rms finish in order to establish the smooth

base state. Very small roughness elements, of minimum height of 6 grn (Rek -- 0.1), are introduced in a spanwise



periodicdistribution1.Theseroughnesselementslinearlyexcitespecificmodeswithintheboundarylayerata level
abovethebackgroundlevelz.Detailedhot-wiremeasurementswithintheboundarylayerprovidetwo-dimensional
mapsof thestationarydisturbancestructure,whilespectraltechniquesareusedto identifyandfollowspecific
stationarymodes.Thedetailsof theprocedureshavebeenestablishedinReibertet al.(1996),Reibert(1996),and
Carrillo(1996).

3 NONLINEARINTERACTIONANDAMPLITUDESATURATION

Theworkinthissectionre-establishesthebasicideasofnonlinearinteractionalongthelinesof theresultsofReibert
et al.(1996).Thebasicgroundrulesarethatweconsiderlow-turbulenceenvironmentsandstationarycrossflow
waves.

3.1 NaturalRoughness

In theabsenceof artificialsurfaceroughness,thenaturallyoccurringstationarycrossflowwavesarenonuniformin
spandueto submicronsurfaceirregularitiesneartheleadingedge.Thisis shownin Figure4, whichdisplaysa
contourplotofthenormalizedboundary-layervelocityatx/c = 0.55 for Rec = 2.4 × 10 6. The Figure shows that the

streamwise velocity u/U, in the (Y,z) plane. The flow is toward the reader (i.e., the observer is looking upstream

into the oncoming boundary-layer flow), and the stationary vortices are turning in the right-handed sense. The

velocity contours are constructed from 100 mean-flow boundary-layer profiles each separated by 1 mm in span. It is

important to note that the wave-like structure of Figure 4 represents the integrated effect of the weak stationary

vortices on the streamwise velocity.

Figure 4 displays a dominant feature at a 12 mm spanwise spacing, which is approximately the most amplified

stationary wavelength according to linear theory. At the same time, the richness in the spectral content is evident and

indicates nonlinear interaction among many modes. The random nature of the leading-edge roughness leads to the

lulls found in the data of Figure 4. These data are typical of all the experiments in the early 1990's.

The difficulty with these data is that a computational model will decompose the unstable motion in modes and thus

needs the individual mode behavior from the experiment if a meaningful comparison can be made. This information

was not forthcoming in the earlier experimental work and Radeztsky et al. 1994 and Reibert et al. 1996 corrected the

situation by considering a forced response of the boundary layer rather than rely on random disturbances.

3.2 Critical Forcing

3.2.1 Details of the Roughness Elements

The initial conditions are controlled by applying a full-span array of k = 6 grn roughness elements at x/c = 0.023.

Whereas the height and spanwise spacing may vary, the roughness elements are always placed at the same chord

location. At x/c = 0.023, the boundary-layer displacement thickness is approximately 250 gin and Re_ -- 0.1 for k = 6

_arn. Thus we expect a weak linear input to the unstable waves. The roughness elements are circular and the diameter

is 3 mm except in the case of 8 mm spacing in which case the diameter is 2 mm. Radeztsky et al. (1993) provide data

on the effect of chord location and diameter of the roughness.

3.2.2 Excitation of the Critical Mode

The spanwise spacing of the elements is 12 mm, corresponding to the naturally occurring most-amplified

wavelength. Figure 5 shows the streamwise velocity contour with the roughness installed. The dominance of the 12

mm mode is striking, and allows a direct calculation of the stationary disturbance amplitude (see Reibert et al. 1996

for a description of the technique).

Figure 6 compares the experimental amplification factor ("N-factor") for the 12 mm roughness forcing with the

predictions of the Orr-Sommerfeld equation (OSE), the linear parabolized stability equations, and the full nonlinear

' A carefully painted surface has roughness on the order of 6 grn.
: This is similar to the classic vibrating ribbon and T-S wave experiment except in this case the waves are stationary.



parabolizedstabilityequations.All computationalresultsare providedby Haynes(1996).The saturation
phenomenonisclearlyevident,andcanbequantified.TheearlygrowthshowsexcellentagreementwithlinearPSE,
howeverstrongnonlineareffectsdevelopwellbeforetransitionat (,x/c)tr =0.52.Theimportanceof nonparallel
effectsisindicatedbythefailureof traditionallinearstabilitytheory(OSE)toaccuratelypredictthegrowthevenin
thelinearrange.Whennonlinearityisadded,theagreementisremarkableovertheentiremeasurementregionandall
aspectsof thegrowtharepredicted.ThisisexplainedinmoredetailinReibertetal.(1996),Reibert(1996),Haynes
andReed(t996),andHaynes(1996).

TheoutstandingagreementshowninFigure6 resultsfromtheinclusionofcurvaturein thecomputations,without
whichthedisturbancegrowthissignificantlyoverpredicted.Thesensitivityto veryweakcurvatureisdueto the
strongstabilizingG6rtlereffectwithconvexcurvature(BenmalekandSaric1994).Thisis thereasonfor the
disagreementbetweenthelinearexperimentsof Radeztskyetal.(1994)andlineartheorywithoutcurvature.More
informationonthesensitivitytocurvaturecanbefoundinHaynes(1996).

3.3 Multiple-Mode Crossflow Waves

Reibert et al. (1996) produced multiple-mode crossflow waves by increasing the space between the roughness

elements. Their streamwise velocity contours obtained with a roughness spacing of 36 mm showed a primary

structure at 36 mm corresponding to the roughness spacing. In addition, higher wavenumber (shorter wavelength)

modulations appeared due to superharmonics that are present at integer multiples of the primary wavenumber. This is

clearly indicated by the power spectral density (PSD) calculations of Reibert et al. (1996) which showed amplified

modes with wavelengths of 36 ram, 18 mm, 12 mm, 9 mm, 7.2 mm, 6 mm, 5.1 mm, 4.5 mm, and 4 mm. The

presence of the roughness-induced harmonic sequence indicates that the stationary crossflow pattern is not

predetermined by external flow conditions, but can be completely controlled by the surface characteristics.

4 ROLE OF SPANWISE SPACING

Two important observations concerning the data of Reibert et al. (1996) are:

1. Unstable waves occur only at integer multiples of the primary disturbance wavenumber, and

2. No subharmonic disturbances are destabilized.

In other words, spacing the roughness elements 12 mm apart excites disturbances with spanwise wavelengths of 6

mm and 4 mm. Spacing the roughness elements 36 mm apart excites disturbances with spanwise wavelengths of 36

mm, 18 mm, 12 mm, 9 mm, 7.1 mm, 6 mm etc. These spacing do not produce any unstable waves with

"intermediate" wavelengths or with wavelengths greater than the imposed spacing.

Following this lead, we investigate the effects of distributed roughness whose primary disturbance wavenumber does

not contain a harmonic at 2., = 12 mm (the most unstable wavelength according to linear theory).

4.1 Overview

All stationary crossflow amplitude data are acquired using the two hot-wire techniques explained in Reibert et al.

(1996). Table 1 summarizes the five data sets examined in this study. The chord Reynolds number is shown in the

column labeled Re C and is fixed at 2.4 x 106 for all cases. Columns k and )[z show the roughness height and

spanwise spacing, respectively, and the last two columns give the type of scan used. A bullet (-) in the BL and Span

columns indicates wall-normal boundary-layer scans and constant-Y spanwise scans, respectively. Note that both

scan types are used for all data sets.



Data
Set

A

B

C

D

E

Roughness

R_/IO_ k [p.m] ._:[m,.,q

2.4 0 0

2.4 6 18

2.4 12 18

2.4 18 18

2.4 6 8

Scan Type

BL Span

Table I: Experimental data sets

To maintain consistency with Reibert (1996), the shorthand notation [k[2 z] will be used to unambiguously define the

roughness configuration. As outlined in Section 3.2.1, the roughness elements are applied in a full-span array at

x/c = 0.023 for all cases. Therefore specifying the roughness height and spacing fully determines the roughness

configuration. Thus, [6118] represents a full-span roughness array with a k = 6 _rn element height and a 2. = 18 mm

spanwise spacing. The natural roughness case, data set A, is given the notation [_0[0].

When presenting the results for individual-mode disturbance amplitudes, crossflow modes will be designated in the

shorthand notation (f,m), where f is the disturbance frequency and m is the mode number. The mode number is

defined as the disturbance wavenumber normalized by the wavenumber of the fundamental mode. Thus, m = 1 and m

= 2 indicate the fundamental disturbance and first superharmonic, respectively. The spanwise-invariant disturbance,

typically called the "mean-flow distortion" mode, is presented by (0,0).

4.2 Natural Roughness---Data Set A

Some of these data have been presented in Figures 3 and 4 while the remainder are referenced to Carrilto (1996).

Extensive measurements were carried out in this case to archive the natural roughness base state should anyone wish

to tackle a computation of these results. The information on flow visualization and transition location will be

discussed in a later section.

4.3 [6118]Roughness--Data Set B

To generate stationary crossflow waves that are uniform in span and contain a fixed spectral content, artificial

surface roughness elements are applied to the airfoil surface as explained in Section 3.2.1. These roughness elements

provide fixed initial conditions for the stationary vortices. A full-span array of 6 gm high roughness elements spaced

18 mm apart is applied at x/c = 0.023. Radeztsky et al. (1993a) shows that this chord location maximizes the effects

of the applied roughness.

The 18 m spacing was chosen to confirm that neither the 12 mm mode nor the 36 mm mode will be excited

according to the observations described at the beginning of Section 4.

4.3.1 Total Disturbance Amplitude

Figure 7 shows the normalized velocity contours at Re c = 2.4 x l06 at x/c = 0.40. The 18 mm spacing is observed

with a very strong 9 mm modulation. Even at [:r4tc= 0.45, the small artificial roughness yields boundary-layer
distortions that are very uniform and periodic is span.

The boundary-layer profiles from which the contour map of Figure 7 is made are shown in Figure 8 . The mean

profile is also shown and as with the no roughness case, the stationary disturbance has dramatically distorted the

mean boundary layer. The spanwise-average profile is doubly inflected even for x/c > 0.30.

Figure 9 presents the total disturbance mode-shape profiles for 0.10 <_x/c<_ 0.45. Following Reibert et al. (1996),

departure from the linear mode shapes begin to occur around x/c = 0.3. The _owth of the disturbance is easily
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characterized by the log of the amplitude ratio such as N = ln(A/Ao). Where Ao is the initial amplitude and N is

commonly called the N-factor. The measure of the disturbance can be the (1) the maximum of the rms mode shape;

(2) the integral of the rms in the wall-normal direction; (3) the integral of the square of the rms. Reibert et al. (1996)

show that when cast in terms of the N-factor, the growth behavior is the same. Thus the max amplitude of the mode

shapes of Figure 9 are used as a measure of growth. The top curve of Figure 10 is the growth of total signal. This

curve shows dramatic amplitude saturation for x/c >_0.25. At these chord locations, the characteristic second lobe

appears in the mode-shape profiles, indicating strong nonlinear effects.

4.3.2 Individual-Mode Amplitude

A full set of spanwise scans are conducted to extract the modal content of the disturbance. The height scanned

corresponds to the maximum of the total disturbance mode shape at each x/c. The power spectral density

computations for these scans are computed. Integration of the peaks of these data are used to form Figure 10.

Unstable modes are first detected at x/c = 0.10. The spectrum at this location shows energy in the (0,2) mode

42: = 9 mm). Although there is a peak evident at _, = 18 ram, its amplitude is very small and close to the noise of

the spectrum. Based on a consistent definition of the spectral noise, the 18 mm peak is ignored. It is interesting that

the (0,2) mode contains more energy than the fundamental (.2z = 18 mm).

The fundamental mode is not measurable until x/c = 0.20. Although the fundamental is detected, the first harmonic

at 2 z =9 mm still contains most of the disturbance energy. The fundamental disturbance grows rapidly for

0.35<_x[c <0.45, where the (0,2) mode actually shows some decay. Higher harmonics become unstable for

x]c>0.25. The spectrum at x/c=0.45 shows detectable disturbances for the (0,3) and (0,4) modes

42: = 6 mm and 4.5 mm). No amplified subharmonics (wavelength doubling) of the roughness spacing are detected.

This is consistent with the finds of Reibert et al. (1996).

Note that the 12 mm wavelength, which is approximately the most unstable according to linear theory, is not

amplified at any x/c. The 18 mm forcing has successfully suppressed the growth of this wavelength disturbance.

Reibert et al. (1996) did not observe this because his roughness spacings were all multiples of 12 mm. Radeztsky et

al. (1994) does show this phenomenon, however, his studies were at a different angle of attack _a = 0-) with much
larger roughness heights (146 gin).

In Figure 10 the (0,2) mode shows exponential growth up to x/c = 0.25, at which point the mode begins to saturate.

The (0,2) mode reaches a maximum amplitude of 13% at x/c = 0.40, after which it decays. It is in this saturation and

decay region 40.35 < xlc <_0.45) of the (0,2) mode where the fundamental disturbance shows strong growth. This is

also the region of strong nonlinear effects as seen by the growth of the second lobe in the total disturbance mode-

shape profiles (Figure 9).

Also presented in Figure 10 are the corresponding N-factor distributions. Since the individual modes are first

detected at different chord locations with different initial amplitudes, each wavelength N-factor curve is reference to

a different amplitude. Thus, direct comparisons between the growth rates, however, are entirely meaningful. The

amplitude of the (0,2) mode 42z = 9 ram) agrees well with the total disturbance amplitude up to x/c = 0.30, the (0,2)

mode amplitude drops from the total disturbance and the amplitudes of the fundamental and higher harmonics grow.

The most important feature of Figure 10, however, is that the linearly most unstable disturbance (2_ = 12 mm) has

been completely suppressed.

4.4 [12118] and [lS18] Roughness--Data Sets C and D

Reibert (1996) observed the interesting feature that, for a fixed roughness spacing of 2 z = 12 ram, the total

disturbance amplitude grew to a constant saturation amplitude even when the roughness height was varied from 6 gm

to 48 _a-n. Although the initial disturbance amplitude increased with larger roughness, the effects downstream relaxed

and yielded similar looking mode shape. Data Sets C and D provide further evidence of this characteristic for the

)l_ = 18 mm roughness spacing.



Theroughnessheightin thisstudyis increasedfrom6[amto 12pmandthento 18_n bystackingtheroughness
elements.Transitionoccursat x]c--0.50 for all three roughness heights. Since saturation amplitude comparisons

are the primary concern, disturbance amplitude data are acquired only at x]c = 0.45. Both the total disturbance and

individual-mode disturbance amplitudes are computed and compared. The details are given in Carrillo (1996).

Table 2 summaries the amplitudes for the total and individual-mode disturbances at x]c = 0.45. As mentioned in the

previous section, the total disturbance amplitude remains constant at about 14% with increasing roughness height.
There does appears to be some redistribution of energy in the modal content as the initial conditions are increased. It

is difficult, however, to make any meaningful conclusions about the effects of the larger roughness on the individual-

mode amplitudes. As shown by the [6118J roughness, forcing at 2, = 18 mm actually excites the 9 mm wavelength

first, which grows rapidly, saturates, and then decays. It is possible that the larger roughness heights yield larger

initial amplitudes for the 9 mm component, which would then grow, saturate, and decay sooner than for the [6118]
roughness case. This would explain the smaller (0,2) mode amplitudes, since the mode would be decaying over a

larger distance by the time x]c = 0.45 is reached. Of course this is all just speculation, and further study must be
done before any definite conclusions can be made.

Roughness

Height

6_rn

12 _.un

18_m

Disturbance Mode Amplitude [%]

Tota /,=lSmn /_=9mm 2_=6_ _=43mm

1

14.2 10.1 I0.0 3.3 0.9

14.8 12.8 8.3 2.7 0.5

13.3 11.2 8.0 0.8 0.9

Table 2. Total and individual-mode amplitudes for Rec = 2.4 x 106 and [kll 8] roughness at x/c = 0.45.

4.5 [618] Roughness---Data Set I:

Section 4.4 shows the effective suppression of the most unstable wavelength by using a roughness spacing that does

not contain superharmonics with wavelengths around 12 mm. In addition, no evidence of subharmonics in this and

past experiments by Radeztsky et al. (1994) or Reibert et al. (1996) has ever been observed. Linear stability theory

predicts that short wavelength disturbances grow early, saturate, and then decay. Thus, the next logical step is to

study the effects of a subcritical roughness spacing _2 z < 12 mm).

Both linear stability theory and the 18 ram-spaced roughness experiments presented above show that the 9 mm

wavelength is also very unstable. Therefore, it is desirable to space the roughness elements less than 9 mm apart. For

this study, the 6 _m-high roughness elements are applied in a full-span array at x/c = 0.023 with a spanwise spacing
of 8 ram.

4.5.1 Flow Visualization

As for the [010] roughness case, surface-shear-stress patterns and transition locations are determined using

naphthalene flow visualization. Figures 11 and 12 show the naphthalene pattern for the [010] and [6181 cases,
respectively at Re_ = 2.4 x 10 6. Again, the flow is from left to right, and the leading edge and chord locations are

marked 3. The stationary crossflow vortices transpose high-and low-momentum fluid within the boundary layer,

yielding a spanwise modulation of the surface shear stress. This modulation is clearly indicated as alternating streaks

in the naphthalene. Regions in which the boundary layer is turbulent are indicated by complete sublimation of the

naphthalene (dark area). Note that this does not hold true in the region near the leading edge, where naphthalene is

not sprayed to prevent roughness contamination. Transition appears as a series of turbulent wedges, which is

The white numerals represent the chord location in percent.



characteristicforswept-wingflows.Notethatthetransitionpatternisnonuniformundernaturalsurfaceroughness
conditions.Thisisconsistentwithpastexperimentsandis indicativeofsubmicronroughnessirregularitiesnearthe
leadingedge.

Thetransitionpatternof Figure12isextremelyinteresting.The[6]8]roughnesshaseffectivelydelayedtransition
past the pressure minimum location (x]c = 0.71). In fact, transition has been moved back even past the transition

location observed under natural surface roughness conditions (Figure 11). Transition occurs for the [618] roughness

case at approximately 80% chord, which is the location of the junction between the wing and trailing-edge flap.
Thus, it is entirely possible that the junction actually causes transition.

Figure 12 shows definite vortex streaks with an 8 mm spacing for 0.30 _<x/c < 0.45. For x/c > 0.45, however, the 8

mm structure "washes out" and the vortex streaks appear at larger spanwise spacings. Although the spacing between

streaks becomes larger in general, there is definite spanwise nonuniformity in the spacing. Thus, it is difficult to

make any conclusions about the longer wavelengths based solely on the flow visualization. Detailed boundary-layer
measurements shed more light on the phenomenon.

For Rec = 2.6 x 10 6 and [6]8] roughness, transition occurs at approximately 59% chord, which is comparable to the

transition location for the no roughness case. Vortex streaks spaced at S mm are apparent up to about x,/c = 0.45, at

which point the longer wavelength structure appears. Transition again occurs in the this region where the longer
spanwise spacing dominates.

The transition pattern for [6]8] roughness and Rec = 2.8 x 106 moves forward to about 50% chord, which is slightly

more forward than the location for the corresponding natural roughness case. As with the

Re c = 2.4 x 10 _' and 2.6 x 10_' cases, 8 ram-spaced vortex streaks are observed. For-See = 2.8 × 10 _', however, the 8

mm structure extends to x/c = 0.50. Transition occurs in this region where the 8 mm structure dominates, and there

is no evidence of the longer-wavelength vortex streaks.

In general, the [6]8] roughness shows the ability of subcritical roughness spacing to delay transition. For

Rec <2.6 ×I0 °, the transition location is at least as far back as that induced even by the finely-polished natural
surface roughness conditions

4.5.2 Total Disturbance Amplitude

The normalized velocity contours for Re c = 2.4x106 and [618] roughness are shown in Figures 13, 14 for chord

locations x/c = 0.30 and 0.60, respectively. The disturbance is first measurable at x/c = 0.10, and a very uniform and

dominant 2 z = 8 mm mode develops for 0.10 < xlc<_ 0.25. At x/c = 0.30 (Figure 13), although the contour plot still

shows a dominant 8 mm mode, there is noticeable development of some slight nonuniformity. This nonuniformity

becomes more dramatic with increasing x/c, and the 8 mm structure fades out in favor of some longer wavelength

disturbances. By x/c = 0.50, the dominance of the fundamental mode _3.z =8 mm) is gone, and x/c = 0.60 (Figure

14) the fundamental mode is indistinguishable in the velocity contours. This is consistent with the results of the
naphthalene flow visualization discussed earlier.

The total disturbance amplitude N-factors computed from the mode shapes are presented in Figure 15. The total

disturbance grows rapidly from 0. lO<xlc< 0.30, at which point the amplitude saturates and then slows strong

decay. At x/c = 0.30, the second lobe high in the mode shape is evident, indicating strong nonlinear effects. The

amplitude continues to decay for 0.30 < x] c < 0.45, At x/c = 0.45, the amplitude levels off and then shows a second

region of strong growth for 0.50< xlc< 0.60. Reibert (1996) observed a similar two-stage growth in some of his

data, but never experienced such a dramatic amplitude decay before the second growth region. The computation of

the Nonlinear PSE by Haynes (1996) confirms the theory and experiment for the 8 mm excitation. For the nonlinear

computations, the necessary initial conditions are determined by matching the total disturbance amplitudes of the

computation and experiment at x/c = 0.I0, where the disturbance is first measurable experimentally. The nonlinear

PSE slightly underpredicts the initial strong growth, but it accurately predicts the maximum N reached by the first

growth stage and even captures the dramatic amplitude decay. This indicates that the drastic decay is a nonlinear

effect, since the linear computations do not predict this feature. The nonlinear PSE does not predict the second



growthstagedownstream.Thisisexpectedbecausethesecondgrowthregionisduetolonger-wavelengthbroadband
disturbances,andnotthefundamental8mmorsuperharmonicdisturbances.The nonlinear PSE code initially puts

energy into the fundamental wavelength and then superharmonic modes are "turned on" as nonlinear effects cause

them to grow above a specified threshold. Thus, as implemented here, the PSE will not be able to predict the longer

wavelength modes downstream.

4.5.3 Individual-Mode Amplitude

The modal content of the stationary vortex structure for [618] roughness is determined with spanwise scans and

spectral analysis. Figure 16 shows the integration of the PSD peaks from constant-height spanwise scans for

0.10< x/c< 0.60 and gives amplitude and N-Factor curves. The fundamental mode is first detected at x/c = 0.10

and grows rapidly to x/c=0.30. The (0,2) mode becomes measurable at x/c=0.20. For ffc>0.30,

nonuniformities develop as longer wavelength modes grow and eventually become dominant. At x/c = 0.60, the

spectrum shows no evidence of the fundamental and (0,2) modes, rather, the spectrum is dominated by broadband

energy contained in longer wavelengths {`2_ > I0 ram). This is similar to the [010] roughness results which show

nonuniformities due to the excitation of longer wavelength disturbances. The details are given by Carrillo (1996).

The fundamental mode shows excellent agreement with the total disturbance for 0.10 < x]c <_0.25. For x/c > 0.30,

the fundamental amplitude drops dramatically from the total disturbance amplitude. Unlike the results of [6_8]

roughness and Reibert (1996), the total disturbance is not completely made up by the fundamental and its

superharmonics. In other words, strong growth of the (0,2) mode is not seen in the region where the fundamental

drops from the total disturbance (0.30 _<x/c <0.60). Rather, the continuing growth of the total disturbance occurs

because the longer wavelengths become unstable downstream. Note that the longer-wavelength disturbances are

broadband and are not subharmonics of the fundamental disturbance.

In short, Rec = 2.4 xl0 6 and [618] roughness delays transition past that of the natural roughness case. Strong early

growth of the 8 mm mode effectively suppresses initial growth of the very unstable 9 mm and 12 mm modes near the

leading edge, which linear stability theory predicts to be the region where these modes have the largest growth rates.

The fundamental (2 z =8 ram) mode saturates and then decays rapidly. This dramatic decay allows for longer

wavelength background disturbances (due to submicron surface irregularities) to become unstable. The growth of

these longer-wavelength broadband disturbances eventually leads to transition.

4 Conclusions

The most remarkable result obtained from the subcritical roughness spacing is the dramatic affect on transition

location. In the absence of artificial roughness, transition occurs before the pressure minimum at x/c = 0.7l for

Rec = 2.4 xl0 _ . Adding k = 6 larn roughness with a spanwise spacing equal to (or a multiple of) the wavelength of

the linearly most unstable wave {2, = 12 mm) moves transition forward to x/c < 0.52. However, the subcritical

forcing at 8 mm spanwise spacing actually delays transition beyond the pressure minimum and onto the trailing-edge

flap at x,/c = 0.80.

Boundary-layer transition in three-dimensional flows is a complicated process involving complex geometries,

multiple instability mechanisms, and nonlinear interactions. Yet significant progress has been recently made toward

understanding the stability and transition characteristics of swept-wing flows. It is worthwhile to repeat part of the

summary of results from Reibert and Saric (1997). Concerning the crossflow problem, the past seven years have

produced several important discoveries including:

• Development of instrumentation that can be applied to the flight-test environment.

• Application of POD methods to interpret wind-tunnel and flight-test transition data.

• Effect of environmental conditions in determining the relative importance of stationary and traveling waves.

• Existence of a secondary instability causing local transition in stationary-crossflow-dominated flows.

• Sensitivity of the stationary disturbance to leading-edge surface roughness.
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• Importanceofnonlineareffectsandmodalinteracticm.

• DevelopmentofnonlinearPSEcodestopredictallaspectsof stationary disturbance growth.

• Sensitivity of stationary wave growth to very weak convex curvature.

• Use of artificial roughness to control the disturbance wavenumber spectrum and delay transition.

Three-dimensional boundary-layer stability is still far from being completely explained. Important factors such as

receptivity--the process by which external disturbances enter the boundary layer and create the initial conditions for

an instability--are still not well understood. Yet in spite of these shortcomings, careful experiments and accurate

computations have resulted in significant progress toward understanding a difficult problem.
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Figure 1. NLF(2)-0415 airfoil and wall liners.
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Figure 3. Basic-state boundary layer profiles at x/c =

0.20. Plot contains 1(30 superposed over 99 mm of

span.
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Figure 2. Unswept NLF(2)-0415 airfoil and upper

surface C distribution for test conditions.
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Figure 4. Streamwise velocity contours at x/c = 0.60.

Re c = 2.4 x 10", no artificial roughness.
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Figure 5. Streamwise velocity contours at x/c = 0.45,

Re_ = 2.4 x 106. k = 6 bun at 12 mm spacing.

Figure 7. Sreamwise velocity contours at x/c = 0.40.

Re c = 2.4 x 106. k = 6 b_n at 18 mm spacing.
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Figure 6. Measured and theoretical N-factors for the

conditions of Figure 5. All theoretical calculations

include curvature (Haynes and Reed 1996).
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Figure 8. Spanwise array of 100 profiles spaced 1 mm

apart at x./c = 0.40. Re c = 2.4 x 106. k = 6 I.trn at 18 mm

spacing.
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Figure I 1. Flow visualization for Re c = 2.4x10 6and no

artificial roughness.
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Figure 10. Total and single-mode disturbance

amplitudes and N-factors. Conditions of Figure 8.
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Figure 13. Streamwise velocity contours at x/c = 0.30.

Re c = 2.4 x 10_. k = 6 grn at 8 mm spacing.
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Figure 15. Total and single-mode disturbance

amplitudes and N-factors. Conditions of Figure 13.
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Figure 14, Streamwise velocity contours at x,/c = 0.60.

Conditions of Figure 13.
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